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Abstract
Recent progress in describing the viscosity of vitrified liquids through an effective
temperature-dependent activation barrier offers a new look at the basis for classifying fragile
and strong glasses. By considering the activated state kinetics of model fragile and strong
liquids, we identify a common structure in the temperature variation of their activation barriers.
A unified description is proposed in which all glass formers can exhibit strong and fragile
behavior in principle, and correspondingly two strong–fragile dynamic crossovers are indicated.
Our deductions are based only on atomistic calculations using specific interatomic interactions.
Thus the results are model predictions subject to further studies and experimental confirmation.
On the other hand, the justification for the method being used to obtain the effective activation
barriers is based on a direct experimental test of the calculated viscosities.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Viscous liquids by definition are characterized by slow
structural relaxation. The shear viscosity η(T ) of a
glass former typically increases by some 15 orders of
magnitude from its normal liquid temperature to the glass
transition temperature where the viscosity has a value of
1012 Pa s. Despite an abundance of measurements showing
such behavior, no theory is yet able to explain the wide range of
viscosity variations from fundamental considerations. Because
viscosity is a measure of the product of shear modulus and a
relaxation time τ , the challenge is to understand the drastic
slowing down in temporal relaxation with undercooling.

In this paper, written on the occasion of the 60th birthday
celebration of Francesco Mallamace who has made significant
contributions to the understanding of structural arrest in
liquids, we discuss the implications of two recent atomistic
calculations of the viscosity of fragile [1] and strong [2] glass-

forming liquids. In these studies a method was introduced to
sample the transition state pathways in a vitrified liquid and
perform a statistical analysis to extract an effective (coarse-
grained) temperature-dependent activation barrier, Q̄(T ). We
begin by showing that the method, denoted as the single-path
approximation (SPA), can provide an acceptable description
of fragile (super-Arrhenius) behavior in the case of a binary
Lennard-Jones (BLJ) model liquid [1], as well as a description
of strong (Arrhenius) behavior in the case of a model of liquid
silica [2]. The question then arises as to what else can be
learnt by combining these two sets of results. We find from
a comparison of Q̄(T ), that both barriers have basically a
common bi-level structure, namely a low activation energy at
high temperatures, high activation energy at low temperatures,
and fragile behavior in the intermediate temperature range. On
the basis of this generic description one can rationalize all
the essential features of the viscosity and activation barrier
results in the BLJ and silica model studies. A prediction
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Figure 1. TSP trajectory of a supercooled binary Lennard-Jones
(BLJ) system generated by the autonomous basin climbing sampling
algorithm [1]. The high and low ends of the zigzag trace indicate the
saddle point and local minima energies, respectively. Energy is
expressed in Tg which is 0.37 in reduced units, a value obtained in
the calculation of the shear viscosity (see figures 3 and C.1). See
appendix B for an explanation of the inset and the significance of the
two minima labeled a and b.

of this scenario is the existence of two dynamic crossovers
between the regimes of fragile and strong behavior, which
is not compatible with classifying the glass-forming liquids
simply as either fragile or strong.

2. Activation energy description of fragile
temperature behavior

The effective activation barrier central to our discussions can
be introduced in different ways. One is to appeal to transition
state theory and write the shear viscosity of a liquid in the
form [3]

η(T ) = ηo exp

[
Q̄(T )

kBT

]
. (1)

Proposed as early as 1930 [4], equation (1) is widely used
empirically to correlate experimental data. The prefactor ηo

is to be determined by matching η(T ) to a known value at
a certain temperature. While we will use equation (1) later
to predict η(T ), we stress here that our intent is to obtain
Q̄(T ) through a systematic procedure that involves sampling
the potential energy surface of the system. Consider the
3N-dimensional potential energy function �(r N), where rN
denotes an atomic configuration of the N-particle system.
We imagine that temporal relaxation of the supercooled
liquid means the system is undergoing a sequence of atomic
configuration changes whereby it samples a series of local
energy minima. See appendix A for a description of an
algorithm to activate a system to climb out of any potential
well in order to traverse across a potential energy surface with
multiple local minima and saddle points [1]. The system
evolution is therefore represented by a trajectory in the form of
a sequence of energy states alternating between local minima
and saddles. A typical sequence, which we will call a transition

Figure 2. Effective temperature-dependent activation barrier Q̄(T )
for a BLJ liquid obtained from the TSP trajectory shown in figure 1
by a statistical analysis (see appendix B for details).

state pathway (TSP) trajectory, obtained by using the BLJ
model [5] is shown in figure 1. It should be noted that detailed
information on the connectivity between the various energy
minima and the saddle points that governs the temperature
variation of the effective activation barrier Q̄(T ) is contained
in this trajectory. In figure 1 the glass transition temperature
Tg, defined as η(Tg) = 1012 Pa s, is used as an energy unit for
the later purpose of comparing liquids which have different Tg.

From a TSP trajectory a corresponding coarse-grained
(effective) temperature-dependent activation barrier can be
extracted by a statistical analysis method, denoted as SPA and
described in appendix B. This method allows us to predict
the temperature variation of the viscosity using equation (1).
The calculated effective activation barrier Q̄(T ), shown in
figure 2 for the BLJ model, has a remarkably simple two-
level behavior [1]. The barrier is low and constant at high
temperature, rises sharply in the interval T/Tg ∼ 1–2 and
appears to level off at a value about ten times greater than
the high temperature level. It can be seen in appendix B that
the barrier is made up of two contributions, a thermodynamic
component that relates an average energy minimum to the
temperature of supercooling (recall the concept of the inherent
structure of liquids [6], shown in figure B.2) and a kinetic
component correlating an effective activation energy with
the depth of the local potential well (cf figure B.1). Each
component has a shape similar to that of Q̄(T ), although
individually not as sharp as the combined result. Having
extracted Q̄(T ) we predict the viscosity using equation (1),
in the process we take the high temperature limit where most
liquid viscosities have a canonical value of 10−5 Pa s and
thus fix ηo. With this procedure and combining figure 2
with equation (1) we have a prediction of η(T ) with no free
parameter.

The resulting viscosity is shown in figure 3, along with
experimental data for several fragile liquids [7]. In displaying
the calculation and experimental data we express temperature
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Figure 3. Temperature variation of viscosity calculated from
equation (1) with Q̄(T ) taken from figure 2 (dashed curve); symbols
denote various measurements on fragile liquids [7].

in non-dimensional form, T/Tg. For the BLJ model Tg has
been determined to be 0.37 in reduced units (see appendix C).
We see that the combination of equation (1) and our calculated
Q̄(T ) describes qualitatively an overall ‘fragile’ behavior
expressed by the set of experimental data. A significant aspect
of figure 3 is the demonstration of a theoretical method capable
of calculating the viscosity from room temperature to the glass
transition temperature. Reflecting on the nature of the SPA
method (appendix B) that leads to the resulting viscosity, we
see it is essentially a mean-field description in which the
system is assumed to follow a single activation path, one that
is associated with the highest activation energy (see the path
traced out in figure B.1). Thus SPA is expected to be an upper-
bound estimate of Q̄(T ) while ignoring the smearing effects of
a distribution of possible activation paths. This understanding
provides an explanation of the discrepancy in figure 3 between
the SPA result and the experimental data, leaving aside the
fact that none of the liquids measured are supposed to be
well described by the BLJ model. To further justify our
interpretation of the experimental test in figure 3, we consider
an alternative and improved method of calculating η(T ) using
the same TSP trajectory information. This is a method based
on linear response theory in statistical mechanics which gives
the viscosity directly, without invoking equation (1). In
this method, which we call the network model, we adopt
the Green–Kubo formalism [8] to derive the viscosity for a
network model system of coupled nodes (see appendix C) [9].
The network model is theoretically more rigorous than the
SPA; it is also more realistic because it considers explicitly
all possible couplings between the multitude of local energy
minima in the sampled trajectory [10]. The results of
predicting η(T ) using the network model are shown in
figure C.1. The agreement between the calculation and
experiment is seen to improve considerably. On the basis of
figures 3 and C.1 we conclude that the temperature behavior of
vitrified fragile liquids can be qualitatively explained. To our
knowledge, these are the first results of this kind.

Figure 4. Temperature variation of viscosity of supercooled silica
predicted by the SPA method and using equation (1) (solid curve) [2]
along with experimental data (closed circles) [7]. Also shown are
two sets of MD simulations (crosses [12] and open circles [13]). The
arrow indicates a crossover between fragile and strong behavior
suggested by simulations of entropy and diffusivity in a model
silica [14].

3. Activation energy description of strong
temperature behavior

The SPA method of TSP sampling and statistical analysis to
obtain Q̄(T ) has also been applied [2] to a model of liquid
silica [11], well known to be a typical strong glass former [7].
The predicted η(T ), shown in figure 4, is seen to compare well
with the experimental data. Given that one expects SPA results
to be upper bounds, the modest overestimate in the absolute
value of η(T ) is reassuring. For the relatively simple potential
model adopted [11] Tg is predicted to be 1580 K [2], while
the experimental value is 1446 K [7]. Thus our silica results,
which are in explicit agreement with available experimental
data, contribute to the validation of the SPA method. Above
the temperature range of experimental data, the SPA results
show a smooth transition from the portion that overlaps with
the experimental data to a portion that overlaps with MD
simulations [12, 13], in a manner that suggests two closely
spaced dynamic crossovers. As the viscosity decreases with
increasing temperature, the behavior undergoes a strong-to-
fragile crossover, followed by a second crossover, this time
from fragile back to strong. In the comparison with MD, we see
agreement in the low-viscosity range where MD simulations
can be expected to be reliable. In the high-viscosity end of
the comparison the MD results do not indicate any fragile
behavior; however, this is a difficult region for MD due to
the slow relaxation of the stress correlation function. Any
problem with convergence would result in an underestimate by
MD. Using the same interatomic potential model, a study of
entropy and diffusion properties using MD has been reported
revealing a fragile–strong transition at 3300 K (indicated by
the arrow in figure 4) [14]. Thus the possibility of a system,
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Figure 5. Comparison of viscosity calculations for silica (solid curve
labeled I) and BLJ (dashed curve labeled II). Also shown are
experimental data which appeared previously in figures 3 and 5. The
inset shows the coarse-grained activation barriers for the two model
systems labeled consistently with the viscosity results. For the silica
model Tg is found to be 1580 K [2], while the experimental value is
1446 K [7].

generally regarded as strong, showing a transition to fragile
behavior is an interesting open question. Recently a fragile to
strong transition in supercooled water has been demonstrated
by a combination of neutron scattering, MD simulation and
extended mode-coupling theory studies [15].

4. A generic activation model

Assuming the calculated temperature behavior shown in
figures 3 and 4 are reasonable, we can compare the activation
barriers to probe the nature of fragile and strong behavior
ascribed to vitrified liquids normally classified as either
fragile or strong. We display the BLJ and silica viscosity
predictions together in figure 5 along with experimental data as
reminders of the approximate nature of the theoretical curves.
Additionally the corresponding effective activation barriers are
shown in the inset of figure 5. Notice the difference in the
temperature scales in the viscosity and activation barrier plots,
one being the reciprocal of the other.

The BLJ system (dashed curve) is seen to exhibit fragile
behavior in a temperature range different from the region
where we have found liquid silica to be fragile. From our
discussions of figures 2 and 3, fragile behavior is associated
with an increase in the activation barrier with decreasing
temperature. Indeed, in the inset in figure 5 two features are
quite prominent. The activation barrier increase is considerably
larger and the associated temperature range more sharply
confined for the BLJ relative to that for silica. We also see the
conventional way of displaying η(T ) brings out more fully the
fragile behavior of the BLJ model (figure 3), but not the fragile
behavior of oxide liquids (figure 4). In terms of their activation

Figure 6. Schematic of a generic coarse-grained activation barrier
with a bi-level structure. All symbols are defined in the text.

barriers Q̄(T ) (figure 5 inset) the fragile behavior manifests
in a complementary way, with the silica results more broadly
displayed. These considerations suggest an idealization that
captures the essence of temperature-dependent activation seen
in both systems. What we mean is that both BLJ and silica
results point to a bi-level form of Q̄(T ), illustrated in figure 6.

In our conceptual description, a generic activation barrier
Q̄(T ) is simply a step with upper and lower levels separated
at a certain height. We visualize it as a curve with roughly
horizontal segments at two ends and an intermediate segment
in the middle. The particular shape of Q̄(T ) is characterized
by two sets of parameters (QH,TL) and (QL,TH), which
control the limiting behavior at low and high temperatures,
respectively. In the transition region between TL and TH, the
barrier is expected to follow a smooth interpolation between
QH and QL with an inflection point. One can see the form
shown in figure 6 captures well the results we have calculated
for the BLJ and silica models. Also it can be rationalized
by simple intuitive considerations of activated state kinetics.
A system evolving at temperatures above TH can expect to
encounter a distribution of many shallow potential wells which,
at the coarse-grained level, could be represented by a constant
activation energy QL. At the opposite limit of temperatures
below TL, the system is very likely to be trapped in a localized,
deep potential well and therefore requires a high activation
energy QH to escape. This scenario is consistent with the
inherent structure concept, see figures B.2 and 2.

In the particular case of BLJ and silica, we see their low-T
segments are similar, QH, ∼40–50 kBTg, whereas the high-T
barriers are quite different, QL ∼ 2kBTg (BLJ) and 10 kBTg

(silica). Given that QH (QL) governs the slope dη

dT at TH (TL),
this contrast is also apparent in figure 5. The larger difference
between QH and QL for BLJ shows up as a more extended and
pronounced fragility range. The larger value of QL for silica
compared to BLJ can be attributed to the nature of chemical
bonding in these two models. This difference also manifests
in the mechanisms of individual activation events which one
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Figure 7. Disconnectivity graphs [16] of BLJ (a) and silica (b) constructed from their respective TSP trajectories.

Figure 8. Potential energy landscape profiles for BLJ (a) and silica (b) deduced by taking a one-dimensional cut across the disconnectivity
graphs shown in figure 7.

can probe through the atomic configurations associated with
the TSP trajectory [1, 2]. Thus the generic barrier can be
viewed as an interpolation between the two limiting values, and
the transition range, between TL and TH, becomes the fragility
zone. This is a way to bring out the common origin of strong
and fragile behavior which may not be apparent from only a
consideration of the viscosities (figure 5).

A direct consequence of figure 6 is the existence of two
transitions between strong and fragile behavior, around TH

and TL. We expect that in the vicinity of the melting point
the behavior of η(T ) should be reasonably Arrhenius until
the temperature decreases to TH where a crossover to fragile
behavior occurs. With further supercooling η(T ) is fragile
until TL, where a second dynamic crossover occurs from fragile
to strong. Given our interpretation of QL above, we expect
TH should depend on chemical bonding, whereas TL should be
a collective characteristic that is system-insensitive other than
scaling with Tg. We believe these two crossovers should be a
universal feature of glass formers.

5. Potential energy landscape signatures of fragility

We have thus far emphasized the effective activation barrier
Q̄(T ) as a way to extract quantitative information from

TSP trajectories. There are other forms of mapping and
classifying the contours and connectivity details of a potential
energy landscape. A particular graphical representation is
shown in figure 7 for the two prototypical systems we are
examining. The local minima and saddle point energies are
visualized through a tree-like structure of vertical lines (states)
and branch points (saddles), a mapping process known as a
‘disconnectivity graph’ [16, 17]. By reference to an energy
axis, each vertical line starts at the local minimum and extends
upward to connect to other potential wells and branches
through various vertex points. Of interest here is the contrast
of the multitude of splitting and large relative fluctuations
in the depth of local minima, features that characterize the
BLJ graph, with a relatively sparse structure seen in the
silica graph. From a disconnectivity graph one can derive a
one-dimensional profile (cut) of the 3N-dimensional potential
energy surface. The resultant potential energy profiles for BLJ
and silica are shown in figure 8. We see that silica, known for
its strong temperature behavior, may be described as a broad-
base funnel with relatively small fluctuations in the depth of
local minima, and an overall ‘smooth’ appearance [16, 17].
On the other hand, the BLJ profile shows the features of a
rough energy landscape, conventionally associated with fragile
behavior [18, 19].
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6. Summary

The present discussion is intended to comment on the nature
of fragile versus strong behavior in the viscosity of vitrified
liquids. Our deliberations are motivated by a method to
calculate an effective temperature-dependent activation barrier
that could describe either fragile or strong behavior. The model
systems studied display fragile as well as strong behavior,
each over an appropriate temperature range, even though
one system (BLJ) is generally regarded as fragile and the
other (silica) as strong. This combination of results calls
into question the practice of classifying glass-forming liquids
as either fragile or strong. In the same spirit a unified
picture of supercooled liquids and the universality of two
dynamic crossovers is suggested. We think what is important
is not whether the QH and QL segments should be strictly
or approximately temperature-dependent, but that these two
activation barriers can be significantly different. On this basis
it may be appropriate to define fragility as a dynamically
necessary interpolation between the barriers at low and high
temperatures, which is the message conveyed by figure 6.
Our deductions have evolved entirely within the framework
of the energy landscape and inherent structure of liquids,
with essentially no input from experimental observations.
Thus an experimental test of the predicted fragile–strong
crossovers would be very timely. Moreover, there are
implications for the current perspectives on the glass transition
phenomenon [19–21] that would be worth pursuing.
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Appendix A. The autonomous basin climbing
algorithm (ABC)

We have implemented a procedure to lift a system of particles
out of any potential well by a series of activation–relaxation
steps. The algorithm [1] is a modification of the method
known as metadynamics which was devised by Laio and
Parrinello for escaping from free-energy minima [22]. Here
we will describe the procedure only schematically. As shown
in figure A.1, one can start with the system in a potential
minimum Em

1 , step (a) in figure A.1. A prescribed energy
penalty function is then imposed and the system is allowed to
relax to settle into a new energy-minimized configuration. At
the end of each activation–relaxation sequence, the system will
find itself in a new energy state, typically higher than before
the penalty imposition, step (b) in the figure. The process of
activation–relaxation is repeated until the system finds itself
in an appreciably lower energy state which indicates it has
gone over a saddle point and settled into an adjacent local
minimum, step (c). As the process continues, the previous
local minima are not visited because the penalty functions
providing the activation before are not removed; thus the

Figure A.1. Schematic illustration explaining the basin filling
method. Dashed and solid lines indicate original potential energy
surface and penalty potential, respectively. Penalty functions push
the system out of a local minimum to a neighboring minimum by
crossing the lowest saddle barrier [1].

system is encouraged to always sample new local minima,
step (d). Repeating the sequence of starting from an initial
local minimum Em

1 to cross a saddle point E s
1 to reach a

nearby local minimum Em
2 , etc, thus generates a transition

state pathway (TSP) trajectory. An example of three local
minima and two saddle points is depicted in figure A.1. We
have used this procedure to generate transition state pathway
trajectories which are a sequence of local minima and saddle
point energies, an example of which is shown in figure 1.
For verification the algorithm has been tested against known
solutions for the problem of adatom diffusion on the surface of
Al(001) [1].

Appendix B. Activation barrier analysis

We describe here the essential steps of the statistical analysis
method used to determine the effective (coarse-grained)
temperature-dependent activation barrier Q̄(T ) from a TSP
trajectory [1]. In the inset of figure 1 we define qi j as the
activation energy that connects the two local minima i and j .
For each pair of local minima, no matter how far separated they
are in the trajectory we have an activation energy. Suppose
we do not care about the state label i and concentrate only
on the two variables, the depth of the initial energy minimum,
Ei , and the magnitude of qi j , Q = |qi j |. We imagine that
we go through the entire trajectory to count the number of
(i, j) combinations that lead to certain values of Q and Ei , and
use the data to construct a density-of-states surface in the two
variables Q and Ei . The result obtained from such an analysis
of figure 1 is shown in figure B.1. We imagine the sampling
of the system energy begins at a deep minimum labeled as
a, and after sampling some 5 × 103 local minima of various
depths it arrives at another deep minimum labeled as b. What
is shown in figure 1 is just this alternating sequence of local
minima and local maxima (saddle point) energies. Keep in
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Figure B.1. Density-of-states surface in the plane of the two
variables in the statistical analysis of the TSP trajectory (figure 1),
the activation energy Q and the well depth of a local minimum. The
‘ridge’ on this surface traces out a correlation between Q and Ei ,
which provides one of two components in the make-up of the
coarse-grained activation barrier shown in figure 2.

mind this is only one transition state pathway (TSP) trajectory
that connects minima a and b, there would be many others
which also connect a with b. We want to emphasize here that,
while a single trajectory, limited by the system size and extent
of the sampling, may not seem sufficient, we have found that
this much trajectory is already useful for obtaining an effective
temperature-dependent activation barrier of the system. Part of
the reason lies in the statistical analysis which we perform to
extract the effective activation barrier, a process which amounts
to coarse-graining over a distribution of activation barriers
across the sampled trajectory.

In figure B.1 the surface is seen to be primarily a single
ridge running diagonally across the Q–Ei plane. The highest
(largest density of states) portion of this ridge lies in the
corner region of shallow minimum and low Q. From here
the ridge runs diagonally at a somewhat lower DOS level
toward the corner region of deep minimum and high Q.
Projecting this ridge onto the Q–Ei plane gives a Q versus
Ei curve, showing an interesting variation of Q with Ei ;
low Q when Ei is shallow rising sharply to high Q when
Ei becomes deep. The Q(Ei ) curve provides an estimate
of how much activation energy Q is needed to climb out of
an energy minimum of depth Ei . This is the kinetics part
of the input to the effective temperature-dependent activation
barrier. The thermodynamics part enters when we relate
the energy minimum Ei to the temperature T . For this
we consider the study of inherent structure of liquids by
quenching from molecular dynamics simulations at various
temperatures [6, 1]. The variation of the averaged quenched
energy with temperature is shown in figure B.2. This energy is
insensitive to T at high T , but decreases quite strongly when T
is below about twice Tg. Now, as a coarse-graining procedure
we assume we can replace Ei , the depth of the local energy
minimum sampled in the TSP trajectory, in the Q versus Ei

relation by the average inherent structure which is correlated
with temperature T in the manner shown in figure B.2. Thus
we arrive a cross plot of Q as a function of T which is shown in

Figure B.2. Variation of average inherent structure with temperature
of supercooling for a BLJ liquid [2]. Such a result was first presented
in a discussion of energy landscape signatures [19]. Here Tg is 0.37
in reduced units (see appendix C).

figure 2. The cross plot thus transforms an effective activation
energy Q(Ei ), extracted from a TSP trajectory analysis,
into another coarse-grained activation barrier Q̄(T ) which is
temperature-dependent. While the process may be seen as
a mapping between Ei and T through the average inherent
structure, we are not able to provide a systematic justification.
It is therefore a physically motivated approximation which is
perhaps best rationalized by its consequence as we will see
below.

We should note that the process of obtaining Q̄(T )

naturally combines two contributions to this effective
activation barrier. The temperature variation of Q̄(T ) is
sharper than either the increase of Q with decreasing Ei or
the decrease of average inherent structure Ē(T ) with lowering
T . The former represents the effects of activated state kinetics,
while the latter may be regarded as a thermodynamic effect
contributing to the sharp increase of Q̄(T ) in the characteristic
temperature range. We will call our formulation of Q̄(T ) the
single-path approximation (for reducing the activation energy
surface to a projection along a diagonal path). Since the
path is chosen to follow ‘the ridge’ in the density-of-states
distribution, we expect this approximation to be an upper-
bound estimate. We have tested the reliability of the activation
barrier obtained by SPA in the case of BLJ by comparing
with results derived from viscosity data on fragile liquids
(cf figure 16 in [1]). In addition, SPA results for model silica
are compared with experiments in figure 4.

Appendix C. The network model for viscosity

We consider a system of N interacting particles with volume �

at temperature T . The system is characterized by an ensemble
of states (nodes in the Markov network), index by {i}, each is

7
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Figure C.1. Temperature variation of viscosity calculated by the
network model with TSP trajectory input from figure 1 (solid
curve) [10]. A more heuristic result given by the SPA formulation,
given in figure 3, is shown for comparison (dashed curve). Also
shown are the experimental data given in figure 3, as a shaded band.

associated with a free energy

Fi = −kBT �n
∫

dx3N exp

(
− V (x3N )

kBT

)
+ const (C.1)

and a shear stress

σi = 1

�

〈
NkBT

∏
+

N∑
n=1

xn ⊗ ∂xn V

〉
i

. (C.2)

In (C.1) and (C.2) V is the interatomic interaction
potential. We assume the states are connected by a set of
transition rates

ai j = νo exp(−qi j/kBT ) (C.3)

where νo is a constant prefactor, a frequency that depends
on the application context, and qi j is the activation barrier
separating state j from state i . The Markov network model
is thus specified by the nodal energies, stress and the activation
barriers {Fi , σi , qi j}. To use this model to calculate the shear
viscosity η(T ) of a liquid we recall the Green–Kubo formalism
in linear response theory where η(T ) is given by the expression

η(T ) = �

kBT

∫ ∞

0
dτ 〈σ(t)σ (t + τ )〉 (C.4)

where 〈σ(t)σ (t + τ )〉 is the time-dependent shear stress
correlation function. Since we assume that at any given time
the system has to reside at one of the states, we can write the
shear stress as

σ(t) =
∑

i

σi pi(t) (C.5)

with pi(t) being an indication function, equal to unity if the
system is at state i at time t , otherwise it is zero. To further
exploit the assumption of the system being in one of the states

at any given time, we introduce a time-dependent nodal stress:

gi(τ ) = 〈σ(t + τ )〉pi (t)=1

=
∑

j

σ j 〈p j(t + τ )〉pi (t)=1 (C.6)

such that the stress correlation function becomes an average
over nodes

〈σ(t)σ (t + τ )〉 =
∑

Piσi gi(τ ) (C.7)

with

Pi = exp

(
− Fi

kBT

)
(C.8)

being the probability that the system is in state i . Thus the
viscosity also becomes a nodal average

η(T ) = �

kBT

∑
i

Piσi Gi (C.9)

with

Gi (T ) =
∫ ∞

0
dτ gi(τ ). (C.10)

The stress gi(τ ) has the physical interpretation of an
average stress at time τ given that the system was in state i at
an earlier time t . It can be shown that gi(τ ) satisfies a balance
equation which can be solved exactly [9, 10]. As a result

η(T ) = �

kBT

∑
i

Piσi
1

ai
(A(ω = 0+)−1σ̃ )i (C.11)

where

(A(ω))i j = δi j − ai j

ω + a j
, ai =

∑
j

ai j . (C.12)

Thus from the TSP trajectory given in figure 1 we can
identify each local energy minimum Ei as Fi , and use each
activation energy qi j to define the transition rate ai j , which
leaves the prefactor νo as the only constant to be determined
in a calculation of η(T ).

The results of the network model are compared in
figure C.1 with the SPA estimate, as well as the experimental
data shown in figure 3, now represented by a band [1].
The improved agreement seen is quite consistent with our
theoretical expectations. The fact that the network model
indeed accounts for a more pronounced ‘fragile’ behavior
similar to the band of experimental data supports our previous
assertion that discrepancy between the SPA and experiment
should be attributed to the neglect of coupling effects in
activated state kinetics. In the network model study we
estimated Tg though the definition η(Tg) = 1012 Pa s,
obtaining Tg = 0.37 in reduced units for the BLJ potential. For
this potential model the mode-coupling theory temperature Tc

has been determined to be 0.435 [5]. The ratio of Tc/Tg ∼ 1.3,
being consistent with expectations [7], serves as another check
of the general reliability of our results. Furthermore, we have
modified our SPA approach by including an entropy correction
in the manner of Adam–Gibbs [23], and found the results
similar to the network model calculation seen in figure C.1.
We interpret this to mean that entropic effects and corrections
for coupling effects work in the same direction in that they
both represent additional complexities in the system energy
landscape.
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